Экзотические питомцы 

Один ген один фермент современная трактовка. Экспрессия генов в процессе биосинтеза белка. Регуляция экспрессии генов у про- и эукариот. Гипотеза «один ген — один фермент», ее современная трактовка. Бизнес-модели «один за один»: TOM’S – не только обувь, н

» , » Один ген-один фермент

Один ген-один фермент

         92
Дата публикации: Июль 24, 2018

    

Гипотеза один ген-один фермент – идея, выдвинутая в начале 1940-х годов, что каждый ген контролирует синтез или активность одного фермента. Концепцию, объединяющую области генетики и биохимии, предложил американский генетик Джордж Уэллс Бидл и американский биохимик Эдвард Л. Татум, которые проводили исследования на Neurospora crassa. Их эксперименты включали в себя сначала визуализацию формы к мутационно-индуцирующим рентгеновским лучам, а затем ее культивирование в минимальной среде роста, которая содержала только основные питательные вещества, необходимые для выживания штамма дикого типа. Они обнаружили, что для своего роста мутантные штаммы плесени требуют добавления определенных аминокислот. Используя эту информацию, исследователи смогли связать мутации в определенных генах с нарушением отдельных ферментов в метаболических путях, которые обычно продуцировали недостающие аминокислоты. Сегодня известно, что не все гены кодируют фермент и что некоторые ферменты состоят из нескольких коротких полипептидов, кодируемых двумя или более генами.

В каждой живой клетке происходит множество химических реакций. Ферменты (энзимы) - белки с особыми и крайне важными функциями. Их называют биокатализаторами. Основная в организме заключается в ускорении биохимических реакций. Исходные реагенты, взаимодействие которых катализируется этими молекулами, именуются субстратами, а конечные соединения - продуктами.

В природе белки-ферменты работают только в живых системах. Но в современной биотехнологии, клинической диагностике, фармацевтике и медицине применяются очищенные энзимы или их комплексы, а также дополнительные компоненты, необходимые для работы системы и визуализации данных для исследователя.

Биологическое значение и свойства ферментов

Без этих молекул живой организм не смог бы функционировать. Все процессы жизнедеятельности слажено работают благодаря энзимам. Главная функция белков-ферментов в организме - регулирование обмена веществ. Без них невозможен нормальный метаболизм. Регуляция активности молекул происходит под действием активаторов (индукторов) или ингибиторов. Контроль действует на разных уровнях синтеза белков. Он также «работает» в отношении уже готовой молекулы.

Основное свойства белков-ферментов - специфичность к определенному субстрату. И, соответственно, способность катализировать только одну или реже ряд реакций. Обычно подобные процессы обратимы. За выполнение обоих функций ответственен один фермент. Но это еще не все.

Роль белков-ферментов существенна. Без них не протекают биохимические реакции. За счет действия ферментов появляется возможность реагентам преодолеть активационный барьер без существенных затрат энергии. В организме нет возможности нагреть температуру более 100 °С или использовать агрессивные компоненты наподобие химической лаборатории. Белок-фермент соединяется с субстратом. В связанном состоянии происходит модификация с последующим освобождением последнего. Именно так действуют все катализаторы, применяемые в химическом синтезе.

Какие уровни организации молекулы белка-фермента?

Обычно эти молекулы имеют третичную (глобула) или четвертичную (несколько соединенных глобул) белковую структуру. Сначала они синтезируются в линейном виде. А потом сворачиваются в требуемую структуру. Для обеспечения активности биокатализатору необходимо определенное строение.

Ферменты, как и другие белки, разрушаются при нагреве, экстремальных значениях pH, агрессивных химических соединений.

Дополнительные свойства ферментов

Среди них выделяют следующие особенности компонентов:

  1. Стереоспецифичность - образование только одного продукта.
  2. Региоселективность - разрыв химической связи или модификация группы только в одном положении.
  3. Хемоселективность - катализ только одной реакции.

Особенности работы

Уровень варьируется. Но любой энзим всегда активен в отношении конкретного субстрата или группы соединений, аналогичных по структуре. Небелковые катализаторы не обладают таким свойством. Специфичность измеряется константой связывания (моль/л), которая может достигать 10 −10 моль/л. Работа активного фермента стремительна. Одна молекула катализирует тысячи-миллионы операций в секунду. Степень ускорения биохимических реакций существенно (в 1000-100000 раз) выше, чем у обычных катализаторов.

Действие ферментов построено на нескольких механизмах. Наиболее простое взаимодействие происходит с одной молекулой субстрата с последующим образованием продукта. Большинство энзимов способны связывать 2-3 разные молекулы, вступающие в реакцию. Например, перенос группы или атома от одного соединения к другому или двойное замещение по принципу «пинг-понг». В данных реакциях обычно соединяется один субстрат, а второй связывается посредством функциональной группы с ферментом.

Изучение происходит с помощью методов:

  1. Определения промежуточных и конечных продуктов.
  2. Изучения геометрии структуры и функциональных групп, связываемых с субстратом и обеспечивающих высокую
  3. Мутации генов фермента и определения изменения в его синтезе и активности.

Активный и связывающий центр

Молекула субстрата значительно меньше по размеру, чем белок-фермент. Поэтому связывание происходит за счет небольшого числа функциональных групп биокатализатора. Они формируют активный центр, состоящий из определенного набора аминокислот. В в структуре присутствует простетическая группа небелковой природы, которая также может входить в состав активного центра.

Следует выделить отдельную группу энзимов. У них в состав молекулы входит кофермент, постоянно связывающийся с молекулой и освобождающийся от нее. Полностью сформированный белок-фермент называется холоферментом, а при удалении кофактора - апоферментом. В качестве коферментов часто выступают витамины, металлы, производные азотистых оснований (НАД - никотинамидадениндинуклеотид, ФАД - флавинадениндинуклеотид, ФМН - флавинмононуклеотид).

Связывающий центр обеспечивает специфичность сродства к субстрату. За счет него формируется устойчивый субстратно-ферментный комплекс. Структура глобулы построена так, чтобы иметь на поверхности нишу (щель или впадину) определенного размера, обеспечивающего связывание субстрата. Располагается эта зона обычно недалеко от активного центра. У отдельных ферментов есть участки для соединения с кофакторами или ионами металлов.

Заключение

Белок-фермент играет важную роль в организме. Подобные вещества катализируют химические реакции, отвечают за процесс обмена веществ - метаболизм. В любой живой клетке постоянно происходит сотни биохимических процессов, включающих восстановительные реакции, расщепление и синтез соединений. Постоянно происходит окисление веществ с большим выделением энергии. Она в свою очередь тратится на формирование углеводов, белков, жиров и их комплексов. Продукты расщепления являются структурными элементами для синтеза необходимых органических соединений.

Экспрессия генов - это процесс, в ходе которого наследственная информация от гена преобразуется в функциональный продукт - РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Экспрессия генов является субстратом для эволюционных изменений.

Регуляция экспрессии генов на уровне транскрипции у прокариот:

Регуляция транскрипции в клетках осуществляется на уровне индивидуальных генов, их блоков и даже целых хромосом. Возможность управления многими генами, как правило, обеспечивается наличием у них общих регуляторных последовательностей нуклеотидов, с которыми взаимодействуют однотипные факторы транскрипции. В ответ на действие специфических эффекторов такие факторы приобретают способность с высокой точностью связываться с регуляторными последовательностями генов. Следствием этого является ослабление или усиление транскрипции соответствующих генов. Три основных этапа транскрипции, которые, используются бактериальными клетками для регуляции синтеза РНК – инициация, элонгация и терминация.

Экспрессия генов эукариот отличатся от прокариот:

1) У эукариот имеются три типа РНК-полимераз: РНК-полимераза1 катализирует транскрипцию рибосомальных генов. РНК-полимераза2 катализирует транскрипцию всех структурных генов. РНК-полимераза3 катализирует транскрипцию тРНК и 5S-рибосомальной РНК (катализирует образование мРНК, присутствующие только у эукариот).

2) Промоторный участок у эукариот более длинный.

3) У эукариот любой ген представляет чередующимися кодирующими и некодирующими последовательностями. Кодирующие – экзоны, некодирующие – интроны.

4) У эукариот встречаются усилители, узнаваемыми белками. Они могут быть расположены достаточно далеко от начала транскрипции. Усилитель и связанный с ним белок приближаются к участку связывания РНК-полимеразы с ДНК.

5) Существуют "глушители", подавляющие транскрипцию.

Гипотеза “один ген - один фермент” , предполагает, что каждый ген может кодировать только одну полипептидную цепь, которая, в свою очередь, может входить как субъединица в более сложный белковый комплекс. Теория выдвинута Г.Бидлом и Э.Татумом в 1941 на основании генетико-биохимического анализа нейроспоры, они обнаружили выключение в экспериментальных условиях под действием различных мутаций каждый раз только одной какой-либо цепи биохимических реакций. Сомнения в абсолютной справедливости данной теории появились в связи с открытием системы «два гена - один полипептид», а также с существованием перекрывающихся генов. С функциональных позиций данная теория условна в связи с нахождением многофункциональных белков.


Закономерности существования клетки во времени. Клеточный (жизненный) цикл. Апоптоз и некроз. Митотический (пролиферативный) цикл. Главные события митотического цикла. Репродуктивная (интерфаза) и разделительная (митоз) фазы митотического цикла. Проблемы клеточной пролиферации в медицине.

Клеточный цикл - это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический цикл - комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой специфических функций многоклеточного организма, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении.

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.

заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. По двум главным событиям митотического цикла в нем выделяют репродуктивную и разделительную фазы, соответствующие интерфазе и митозу классической цитологии.

Апоптоз - программируемая клеточная смерть, регулируемый процесс самоликвидации на клеточном уровне, в результате которого клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро фагоцитируются макрофагами либо соседними клетками, минуя развитие воспалительной реакции. Процесс апоптоза продолжается 1-3 часа. Одной из основных функций апоптоза является уничтожение дефектных (повреждённых, мутантных, инфицированных) клеток.

Некроз - патологический процесс, выражающийся в местной гибели ткани в живом организме в результате какого-либо экзо- или эндогенного повреждения. Некроз проявляется в набухании, денатурации и коагуляции цитоплазматических белков, разрушении клеточных органелл и, наконец, всей клетки. Наиболее частыми причинами некротического повреждения ткани являются: прекращение кровоснабжения и воздействие патогенными продуктами бактерий или вирусов.

30. Митотический цикл. Основные события периодов интерфазы. Содержание и значение фаз митоза. Биологическое значение митоза.

Митотический (пролиферативный ) цикл -комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении. Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч.

Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.

Главные события митотического цикла заключаются в редупликации (самоудвоении ) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом - ядерных структур, в которых сосредоточено более 90% генетического материала эукариотической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Хромосомы во взаимодействии с внехромосомными механизмами обеспечивают: а) хранение генетической информации, б) использование этой информации для создания и поддержания клеточной организации, в) регуляцию считывания наследственной информации, г) удвоение (самокопирование) генетического материала, д) передачу его от материнской клетки дочерним.

Изменения клетки в митотическом цикле.

По двум главным событиям митотического цикла в нем выделяют репродуктивную и разделительную фазы, соответствующие интерфазе и митозу классической цитологии (рис. 2.11).

В начальный отрезок интерфазы (постмитотический, пресинтетический, или Gi-период ) восстанавливаются черты организации интерфазной клетки, завершается формирование ядрышка, начавшееся еще в телофазе. Из цитоплазмы в ядро поступает значительное (до 90%) количество белка. В цитоплазме параллельно реорганизации ультраструктуры интенсифицируется синтез белка. Это способствует росту массы клетки. Если дочерней клетке предстоит вступить в следующий митотический цикл, синтезы приобретают направленный характер: образуются химические предшественники ДНК, ферменты, катализирующие реакцию редупликации ДНК, синтезируется белок, начинающий эту реакцию. Таким образом осуществляются процессы подготовки следующего периода интерфазы - синтетического.

В синтетическом или S-периодв удваивается количество наследственного материала клетки. Он заключается в расхождении биспирали ДНК на две цепи с последующим синтезом возле каждой из них комплементарной цепочки. В результате возникают две идентичные биспирали. Молекулы ДНК, комплементарные материнским, образуются отдельными фрагментами по длине хромосомы, причем неодномоментно (асинхронно) в разных участках одной хромосомы, а также в разных хромосомах. Затем участки (единицы репликации - репликоны ) новообразованной ДНК «сшиваются» в одну макромолекулу.

Отрезок времени от окончания синтетического периода до начала митоза занимает постсинтетический (предмитотический ), или G 2 -neриод интерфазы. Он характеризуется интенсивным синтезом РНК и особенно белка. Завершается удвоение массы цитоплазмы по сравнению с началом интерфазы. Это необходимо для вступления клетки в митоз.

Открытия экзон-интронной организации эукариотических генов и возможности альтернативного сплайсинга показали, что одна и та же нуклеотидная последовательность первичного транскрипта может обеспечить синтез нескольких полипептидных цепей с разными функциями или их модифицированных аналогов. Например, в митохондриях дрожжей имеется ген box (или cob), кодирующий дыхательный фермент цитохром b. Он может существовать в двух формах (рис. 3.42). «Длинный» ген, состоящий из 6400 п. н., имеет 6 экзонов общей протяженностью 1155 п.н. и 5 интронов. Короткая форма гена состоит из 3300 п.н. и имеет 2 интрона. Она фактически представляет собой лишенный первых трех интронов «длинный» ген. Обе формы гена одинаково хорошо экспрессируются.

После удаления первого интрона «длинного» гена box на основе объединенной нуклеотидной последовательности двух первых экзонов и части нуклеотидов второго интрона образуется матрица для самостоятельного белка - РНК-матуразы (рис. 3.43). Функцией РНК-матуразы является обеспечение следующего этапа сплайсинга - удаление второго интрона из первичного транскрипта и в конечном счете образование матрицы для цитохрома b.

Другим примером может служить изменение схемы сплайсинга первичного транскрипта, кодирующего структуру молекул антител в лимфоцитах. Мембранная форма антител имеет на С-конце длинный «хвост» аминокислот, который обеспечивает фиксацию белка на мембране. У секретируемой формы антител такого хвоста нет, что объясняется удалением в ходе сплайсинга из первичного транскрипта кодирующих этот участок нуклеотидов.

У вирусов и бактерий описана ситуация, когда один ген может одновременно являться частью другого гена или некоторая нуклеотидная последовательность ДНК может быть составной частью двух разных перекрывающихся генов. Например, на физической карте генома фага ФХ174 (рис. 3.44) видно, что последовательность гена В располагается внутри гена А, а ген Е является частью последовательности гена D. Этой особенностью организации генома фага удалось объяснить существующее несоответствие между относительно небольшим его размером (он состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех синтезируемых белках, которое превышает теоретически допустимое при данной емкости генома. Возможность сборки разных пептидных цепей на мРНК, синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет начать трансляцию другого пептида с новой точки отсчета.

Нуклеотидная последовательность гена В является одновременно частью гена А, а ген Е составляет часть гена D

В геноме фага λ были также обнаружены перекрывающиеся гены, транслируемые как со сдвигом рамки, так и в той же рамке считывания. Предполагается также возможность транскрибирования двух разных мРНК с обеих комплементарных цепей одного участка ДНК. Это требует наличия промоторных областей, .определяющих движение РНК-полимеразы в разных направлениях вдоль молекулы ДНК.

Описанные ситуации, свидетельствующие о допустимости считывания разной информации с одной и той же последовательности ДНК, позволяют предположить, что перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных пептидов на основе одной и той же последовательности ДНК.

Имея в виду все сказанное, необходимо внести поправку в определение гена. Очевидно, нельзя больше говорить о гене как о непрерывной последовательности ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее время наиболее приемлемой все же следует считать формулу «Один ген - один поли-пептид», хотя некоторые авторы предлагают ее переиначить: «Один полипептид - один ген». Во всяком случае, под термином ген надо понимать функциональную единицу наследственного материала, по химической природе являющуюся полинуклеотидом и определяющую возможность синтеза полипептидной цепи, тРНК или рРНК.

Один ген один фермент.

В 1940 г Дж. Бидл и Эдвард Татум использовали новый подход для изучения того, как гены обеспечивают метаболизм у более удобного объекта исследований – у микроскопического грибка Neurospora crassa.. Ими были получены мутации, у которых; отсутствовала активность того-или иного фермента метаболизма. А это приводило к тому, что мутантный гриб бьл не способен сам синтезировать определенный метаболит (например, аминокислоту лейцин) и мог жить только тогда, когда лейцин был добавлен в питательную среду. Сформулированная Дж.Бидлом и Э.Татумом теория "один ген - один фермент" - быстро получила широкое признание у генетиков, а сами они были награждены Нобелевской Премией.

Методы. селекции так называемых "биохимических мутаций", приводящих к нарушениям действия ферментов, обеспечивающих разные пути метаболизма, оказались очень плодотворными не только для науки, но и для практики. Сначала они привели к возникновению генетики и селекции промышленных микроорганизмов, а потом и к микробиологической промышленности, которая использует штаммы микроорганизмов, сверх продуцирующие такие стратегически важные вещества, как антибиотики, витамины, аминокислоты и др.. В основе принципов селекции и генной инженерии штаммов сверхпродуцентов лежит представление, что "один ген кодирует один фермент". И хотя это представление отлично практике приносит многомиллионные прибыли и спасает миллионы жизней (антибиотики) - оно не является окончательным. Один ген - это не только один фермент.

"

4.2.1. Гипотеза «один ген – один фермент»

Первые исследования. После того как в 1902 г. Гэррод указал на связь генетического дефекта при алкаптонурии с неспособностью организма расщеплять гомогентизиновую кислоту, важно было выяснить специфический механизм, лежащий в основе этого нарушения. Поскольку тогда уже было известно, что метаболические реакции катализируются ферментами, можно было предположить, что именно нарушение какого-то фермента приводит к алкаптонурии. Такая гипотеза обсуждалась Дришем (в 1896 г.). Ее высказывали также Холдейн (1920 г., см. ) и Гэррод (1923 г. ). Важными этапами в развитии биохимической генетики стали работы Кюхна и Бутенандта по изучению окраски глаз у мельничной огневки Ephestia kuhniella и аналогичные исследования Бидла и Эфрусси на Drosophila (1936) . В этих пионерских работах для выяснения механизмов действия генов были выбраны мутанты насекомых, изученные ранее генетическими методами. Однако такой подход не привел к успеху. Проблема оказалась слишком сложной, и чтобы решить ее, необходимо было:

1) подобрать простой модельный организм, удобный для экспериментального изучения;

2) искать генетическую основу биохимических признаков, а не биохимическую основу генетически детерминированных признаков. Оба условия были выполнены в работе Бидла и Татума в 1941 году (см. также Бидл, 1945 ).

Модель Бидла и Татума. Статья этих исследователей начиналась так:

«С точки зрения физиологической генетики - развитие и функционирование организма может быть сведено к сложной системе химических реакций, которые каким-то образом контролируются генами. Вполне логично предположить, что эти гены... либо сами выступают в роли ферментов, либо определяют их специфичность. Известно, что генетики-физиологи обычно пытаются исследовать физиологические и биохимические основы уже известных наследственных признаков. Этот подход позволил установить, что многие биохимические реакции контролируются специфическими генами. Такие исследования показали, что ферменты и гены обладают специфичностью одного порядка. Однако возможности этого подхода ограниченны. Наиболее серьезное ограничение заключается в том, что при этом в поле зрения исследователей попадают наследственные признаки, не имеющие летального эффекта и, следовательно, связанные с реакциями, которые не очень существенны для жизнедеятельности организма. Второе затруднение... заключается в том, что традиционный подход к проблеме подразумевает использование внешне проявляющихся признаков. Многие из них представляют собой морфологические вариации, основанные на системах биохимических реакций, настолько сложных, что их анализ необычайно затруднен.

Подобные соображения привели нас к следующему выводу. Изучение общей проблемы генетического контроля биохимических реакций, определяющих развитие и метаболизм, должно проводиться с помощью процедуры, противоположной общепринятой: вместо того чтобы пытаться выяснить химические основы известных наследственных признаков, необходимо установить, обеспечивают ли гены контроль известных биохимических реакций и как они это делают. Нейроспора, относящаяся к аскомицетам, обладает свойствами, позволяющими реализовать такой подход и одновременно служит удобным объектом для генетических исследований. Вот почему наша программа была построена на использовании именно этого организма. Мы исходили из того, что облучение рентгеном вызывает мутации в генах, контролирующих определенные химические реакции. Пусть для выживания в данной среде организм должен осуществлять какую-то химическую реакцию, тогда мутант, лишенный такой способности, в этих условиях окажется нежизнеспособным. Однако его можно поддерживать и изучать, если выращивать в среде, к которой добавлен жизненно необходимый продукт генетически блокированной реакции».


4 Действие генов 9

Рис. 4.1. Схема эксперимента по обнаружению биохимических мутантов нейроспоры На полноценной среде мутации, индуцированные рентгеновскими лучами или ультрафиолетом, не нарушают роста гриба. Однако на минимальной среде мутант не растет. При добавлении к минимальной среде витаминов способность к росту восстанавливается При внесении аминокислот роста нет На основании этих данных можно предположить, что мутация произошла в гене, который контролирует метаболизм витамина Следующий шаг заключается в идентификации витамина, способного восстановить нормальную функцию Генетический блок обнаружен среди реакций биосинтеза витамина .

Далее Бидл и Татум приводят описание схемы эксперимента (рис. 4.1). В состав полной среды входил агар, неорганические соли, солодовый экстракт, дрожжевой экстракт и глюкоза. Минимальная среда содержала только агар, соли, биотин и источник углерода. Наиболее подробно были исследованы мутанты, которые росли на полной среде и не росли на минимальной. Чтобы установить соединение, синтез которого нарушен у каждого из мутантов, в минимальный агар вносили отдельные компоненты полной среды.

Таким способом были выделены штаммы, неспособные синтезировать определенные факторы роста: пиридоксин, тиамин и парааминобензойную кислоту. Было показано, что эти дефекты обусловлены мутациями в специфических локусах. Работа положила начало многочисленным исследованиям на нейроспоре, бактериях и дрожжах, в которых было установлено соответствие «генетических блоков», ответственных за отдельные метаболические этапы, и специфических нарушений ферментов. Этот подход очень быстро превратился в инструмент, позволяющий исследователям раскрывать метаболические пути.

Гипотеза «один ген - один фермент» получила прочное экспериментальное подтверждение. Как показали работы последующих десятилетий, она оказалась удивительно плодотворной. Анализ дефектных ферментов и их нормальных вариантов позволил вскоре выявить такой класс генетических нарушений, которые приводили к изменению функции фермента, хотя сам белок по-прежнему обнаруживался и сохранял иммунологические свойства. В других случаях менялся температурный оптимум активности фермента. Некоторые варианты можно было объяснить мутацией, влияющей на общий регуляторный механизм и изменяющей в результате активность целой группы ферментов. Подобные исследования привели к созданию концепции регуляции активности генов у бактерий, которая включала и концепцию оперона.


10 4. Действие генов

Первые примеры ферментативных нарушений у человека. Первым наследственным заболеванием человека, для которого удалось показать ферментативное нарушение, была метгемоглобинемия с рецессивным типом наследования (Гибсон и Харрисон, 1947 ; Гибсон, 1948 ) (25080). В этом случае поврежденным ферментом является NADH - зависимая метгемоглобин-редуктаза. Первая попытка систематического изучения группы заболеваний человека, связанных с дефектами метаболизма, была предпринята в 1951 году. При исследовании болезни накопления гликогена супруги Кори показали, что в восьми из десяти случаев патологического состояния, которое диагностировалось как болезнь Гирке (23220), структура гликогена печени представляла собой нормальный вариант, а в двух случаях была явно нарушена. Было также очевидно, что гликоген печени, накапливаясь в избытке, не может быть непосредственно превращен в сахар, поскольку у больных проявляется тенденция к гипогликемии. Для расщепления гликогена с образованием глюкозы в печени необходимы многие ферменты. Два из них-амило-1,6-глюкозидаза и глюкозо6-фосфатаза-были выбраны для изучения как возможные дефектные элементы ферментной системы. В гомогенатах печени при различных значениях рН было измерено освобождение фосфата из глюкозо-6фосфата. Результаты представлены на рис. 4.2. В нормальной печени обнаруживалась высокая активность с оптимумом при рН 6-7. Сильное нарушение функции печени при циррозе коррелировало с незначительным уменьшением активности. С другой стороны, в случае болезни Гирке с летальным исходом, активность фермента обнаружить вообще не удалось; такой же результат был получен при обследовании второго подобного больного. У двух пациентов с менее выраженными симптомами наблюдалось значительное уменьшение активности.

Было сделано заключение, что в указанных случаях болезни Гирке с летальным исходом имел место дефект глюкозо-6-фосфатазы. Однако в большинстве более легких случаев активность этого фермента оказалась не ниже, чем при циррозе печени, и только у двух больных она была несколько меньшей (рис. 4.2).

По мнению супругов Кори, аномальное накопление гликогена в мышечной ткани нельзя связывать с недостатком глюкозо-6-фосфатазы, поскольку в мышцах этот фермент отсутствует и в норме. В качестве возможного объяснения гликогеноза мышц они предположили нарушение активности амило-1,6-глюкозидазы. Это предсказание вскоре подтвердилось: Форбс обнаружил такой дефект при одном из клинически выраженных случаев болезни накопления гликогена с вовлечением сердечной и скелетных мышц. Сейчас нам


4. Действие генов 11

известно большое число ферментативных дефектов при болезни накопления гликогена .

Хотя по степени проявления различные формы этого заболевания несколько различаются, в клиническом отношении между ними много общего. За одним исключением, все они наследуются по аутосомнорецессивному типу. Если бы ферментативные дефекты не были раскрыты, патология накопления гликогена рассматривалась бы как одно заболевание с характерными внутрисемейными корреляциями по тяжести течения, деталям симптоматики и срокам летального исхода. Таким образом, перед нами пример, когда генетическая гетерогенность, которую можно было лишь предполагать на основании изучения фенотипа (разд. 3.3.5), подтвердилась при анализе на биохимическом уровне: исследование ферментативной активности позволило идентифицировать специфические гены.

В последующие годы темп исследований в области ферментативных дефектов нарастал, и для 588 идентифицированных рецессивных аутосомных генов, которые Мак-Кьюсик описывает в шестом издании своей книги «Менделевское наследование у человека» (1983) , более чем в 170 случаях обнаружены специфические ферментативные нарушения. Наши успехи в этой области непосредственно связаны с развитием концепций и методов молекулярной генетики.

Некоторые этапы изучения ферментативных нарушений у человека. Мы приводим лишь наиболее важные вехи этого продолжающегося процесса: 1934 Фёллинг открыл фенилкетонурию

1941 Бидл и Татум сформулировали гипотезу «один ген - один фермент» 1948 Гибсон описал первый случай ферментативного нарушения при заболевании у человека (рецессивная метгемоглобинемия)

1952 Супруги Кори обнаружили недостаточность глюкозо-6-фосфатазы при болезни Гирке

1953 Джервис продемонстрировал отсутствие фенилаланингидроксилазы при фенилкетонурии . Бикель сообщил о первой попытке смягчить ферментативное нарушение, применив диету с низким содержанием фенилаланина

1955 Смитис разработал методику электрофореза в крахмальном геле

1956 Карсон и др. обнаружили дефект глюкозо-6-фосфат- дегидрогеназы (G6PD) в случае индуцированной гемолитической анемии

1957 Калькар и др. описали ферментативную недостаточность при галактоземии, показав, что у человека и бактерий наблюдается идентичное нарушение ферментативной активности

1961 Крут и Вайнберг продемонстрировали дефект фермента при галактоземии in vitro в культуре фибробластов

1967 Сигмиллер и др. обнаружили дефект гипоксантин-гуанин-фосфорибозилтрансферазы (HPRT) при синдроме Леша -Найхана

1968 Кливер описал нарушение эксцизионной репарации при пигментной ксеродерме

1970 Нейфельд выявил ферментативные дефекты при мукополисахаридозах, что позволило идентифицировать пути расщепления мукополисахаридов

1974 Браун и Голдстейн доказали, что генетически детерминированная суперпродукция гидроксиметилглютарилСоА-редуктазы при семейной гиперхолестеринемии обусловлена дефектом локализованного в мембране рецептора липопротеинов низкой плотности, который модулирует активность этого фермента (HMG)

1977 Слай и др. продемонстрировали, что маннозо-6-фосфат (как компонент лизосомальных ферментов) узнается рецепторами фибробластов. Генетический дефект процессинга препятствует связыванию лизосомных ферментов, в результате нарушается их выход в цитоплазму и последующая секреция в плазму (I-клеточная болезнь)


12 4. Действие генов

1980 При псевдогипопаратиреозе обнаружен дефект белка, обеспечивающего сопряжение рецептора и циклазы.